Minggu, 05 Juni 2016

BIOINFORMATIKA




Bioinformatika merupakan kajian yang memadukan disiplin biologi molekul matematika dan teknik informasi (TI). Ilmu ini didefinisikan sebagai aplikasi dari alat komputasi dan analisa untuk menangkap dan menginterpretasikan data-data biologi molekul.
Biologi molekul sendiri juga merupakan bidang interdisipliner, mempelajari kehidupan dalam level molekul. Mula-mula bidang kajian ini muncul atas inisiatif para ahli biologi molekul dan ahli statistik, berdasarkan pola pikir bahwa semua gejala yang ada di alam ini bisa dibuat secara artificial melalui simulasi dari data-data yang ada. Pada bidang Bioinformatika data-data atau tindak-tanduk gejala genetika menjadi inti pembentukan simulasi.
Pada saat ini, Bioinformatika mempunyai peranan yang sangat penting diantaranya adalah untuk manajemen data-data biologi molekul, terutama sekuen DNA dan informasi genetika. Perangkat utama Bioinformatika adalah software dan didukung
oleh kesediaan internet.

Sejarah

Penetrasi Teknologi Informasi (TI) dalam berbagai disiplin ilmu telah melipatgandakan perkembangan ilmu bersangkutan. Berbagai kajian baru bermunculan
sejalan dengan perkembangan TI itu sendiri dan disiplin ilmu yang didukungnya.
Aplikasi TI dalam bidang biologi molekul telah melahirkan bidang Bioinformatika.
Kajian ini semakin penting, sebab perkembangannya telah mendorong kemajuan
bioteknologi di satu sisi, dan pada sisi lain memberi efek domino pada bidang kedokteran, farmasi, lingkungan dan lainnya.
Kajian baru Bioinformatika ini tidak lepas dari perkembangan biologi molekul
modern yang ditandai dengan kemampuan manusia untuk memahami genom, yaitu cetak biru informasi genetik yang menentukan sifat setiap makhluk hidup yang disandi dalam bentuk pita molekul DNA (asam deoksiribonukleat). Kemampuan untuk memahami dan memanipulasi kode genetik DNA ini sangat didukung oleh TI melalui perangkat perangkat keras maupun lunak. Hal ini bisa dilihat pada upaya Celera Genomics, perusahaan bioteknologi Amerika Serikat yang melakukan pembacaan sekuen genom manusia yang secara maksimal memanfaatkan TI sehingga bisa melakukan pekerjaannya dalam waktu yang singkat (hanya beberapa tahun), dibanding usaha konsorsium lembaga riset publik AS, Eropa, dan lain-lain, yang memakan waktu lebih dari 10 tahun.
Kelahiran Bioinformatika modern tak lepas dari perkembangan bioteknologi di
era tahun 70-an, dimana seorang ilmuwan AS melakukan inovasi dalam mengembangkan teknologi DNA rekombinan. Berkat penemuan ini lahirlah perusahaan bioteknologi pertama di dunia, yaitu Genentech di AS, yang kemudian memproduksi protein hormon insulin dalam bakteri, yang dibutuhkan penderita diabetes. Selama ini insulin hanya bisa didapatkan dalam jumlah sangat terbatas dari organ pankreas sapi.
Bioteknologi modern ditandai dengan kemampuan pada manipulasi DNA.
Rantai/sekuen DNA yang mengkode protein disebut gen. Gen ditranskripsikan menjadi
mRNA, kemudian mRNA ditranslasikan menjadi protein. Protein sebagai produk akhir
bertugas menunjang seluruh proses kehidupan, antara lain sebagai katalis reaksi biokimia dalam tubuh (disebut enzim), berperan serta dalam sistem pertahanan tubuh melawan virus, parasit dan lain-lain (disebut antibodi), menyusun struktur tubuh dari ujung kaki (otot terbentuk dari protein actin, myosin, dan sebagainya) sampai ujung rambut (rambut tersusun dari protein keratin), dan lain-lain. Arus informasi, DNA -> RNA -> Protein inilah yang disebut sentral dogma dalam biologi molekul.
Sekuen DNA satu organisme, yaitu pada sejenis virus yang memiliki kurang lebih
5.000 nukleotida/molekul DNA atau sekitar 11 gen, berhasil dibaca secara menyeluruh
pada tahun 1977. Sekuen seluruh DNA manusia terdiri dari 3 milyar nukleotida yang
menyusun 100.000 gen dapat dipetakan dalam waktu 3 tahun. Saat ini terdapat milyaran data nukleotida yang tersimpan dalam database DNA, GenBank di AS yang didirikan tahun 1982. Di Indonesia, ada Lembaga Biologi Molekul Eijkman yang terletak di Jakarta. Di sini kita bisa membaca sekuen sekitar 500 nukleotida hanya dengan
membayar $15. Trend yang sama juga nampak pada database lain seperti database sekuen asam amino penyusun protein, database struktur 3D protein, dan sebagainya. Inovasi teknologi DNA chip yang dipelopori oleh perusahaan bioteknologi AS, Affymetrix di Silicon Valley telah mendorong munculnya database baru mengenai RNA. Desakan kebutuhan untuk mengumpulkan, menyimpan dan menganalisa data-data biologis dari database DNA, RNA maupun protein inilah yang semakin memacu perkembangan kajian Bioinformatika.

Contoh Penggunaan Bioinformatika:

·      Bioinformatika dalam Bidang Klinis

Bioinformatika dalam bidang klinis sering disebut sebagai informatika klinis
(clinical informatics). Aplikasi dari informatika klinis ini berbentuk manajemen data-data klinis dari pasien melalui Electrical Medical Record (EMR) yang dikembangkan oleh Clement J. McDonald dari Indiana University School of Medicine pada tahun 1972. McDonald pertama kali mengaplikasikan EMR pada 33 orang pasien penyakit gula (diabetes). Sekarang EMR ini telah diaplikasikan pada berbagai penyakit. Data yang disimpan meliputi data analisa diagnosa laboratorium, hasil konsultasi dan saran, foto rontgen, ukuran detak jantung, dan lain lain. Dengan data ini dokter akan bisa menentukan obat yang sesuai dengan kondisi pasien tertentu dan lebih jauh lagi, dengan dibacanya genom manusia, akan memungkinkan untuk mengetahui penyakit genetic seseorang, sehingga penanganan terhadap pasien menjadi lebih akurat.

·      Bioinformatika untuk Identifikasi Agent Penyakit Baru

Bioinformatika juga menyediakan tool yang sangat penting untuk identifikasi
agent penyakit yang belum dikenal penyebabnya. Banyak sekali penyakit baru yang
muncul dalam dekade ini, dan diantaranya adalah SARS (Severe Acute Respiratory Syndrome). Pada awalnya, penyakit ini diperkirakan disebabkan oleh virus influenza karena gejalanya mirip dengan gejala pengidap influenza. Akan tetapi ternyata dugaan ini salah karena virus influenza tidak terisolasi dari pasien. Perkirakan lain penyakit ini disebabkan oleh bakteri Candida karena bakteri ini terisolasi dari beberapa pasien. Tapi perkiraan ini juga salah. Akhirnya ditemukan bahwa dari sebagian besar pasien SARS terisolasi virus Corona jika dilihat dari morfologinya.
Sekuen genom virus ini kemudian dibaca dan dari hasil analisa dikonfirmasikan bahwa penyebab SARS adalah virus Corona yang telah berubah (mutasi) dari virus Corona yang ada selama ini. Kedua pada proses mencari kemiripan sekuen (homology alignment) virus yang didapatkan dengan virus lainnya. Dari hasil analisa virus SARS diketahui bahwa genom virus Corona penyebab SARS berbeda dengan virus Corona lainnya. Perbedaan ini diketahui dengan menggunakan homology alignment dari sekuen virus SARS. Selanjutnya, Bioinformatika juga berfungsi untuk analisa posisi sejauh mana suatu virus berbeda dengan virus lainnya.

·      Bioinformatika untuk Diagnosa Penyakit Baru

Untuk menangani penyakit baru diperlukan diagnosa yang akurat sehingga dapat
dibedakan dengan penyakit lain. Diagnosa yang akurat ini sangat diperlukan untuk
pemberian obat dan perawatan yang tepat bagi pasien. Ada beberapa cara untuk mendiagnosa suatu penyakit, antara lain: isolasi agent penyebab penyakit tersebut dan analisa morfologinya, deteksi antibodi yang dihasilkan         dari infeksi dengan teknik enzyme-linked immunosorbent assay (ELISA), dan deteksi gen dari agent pembawa penyakit tersebut dengan Polymerase Chain Reaction (PCR).
Teknik yang banyak dan lazim dipakai saat ini adalah teknik PCR. Teknik ini
sederhana, praktis dan cepat. Yang penting dalam teknik PCR adalah disain primer untuk amplifikasi DNA, yang memerlukan data sekuen dari genom agent yang bersangkutan dan software seperti yang telah diuraikan di atas. Disinilah Bioinformatika memainkan peranannya. Untuk agent yang mempunyai genom RNA, harus dilakukan reverse    transcription (proses sintesa DNA dari RNA) terlebih dahulu dengan menggunakan enzim reverse transcriptase. Setelah DNA diperoleh baru dilakukan PCR. Reverse transcription dan PCR ini bisa dilakukan sekaligus dan biasanya dinamakan RT-PCR. Teknik PCR ini bersifat kualitatif, oleh sebab itu sejak beberapa tahun yang lalu dikembangkan teknik lain, yaitu Real Time PCR yang bersifat kuantitatif. Dari hasil Real Time PCR ini bisa ditentukan kuantitas suatu agent di dalam tubuh seseorang, sehingga bisa dievaluasi tingkat emergensinya. Pada Real Time PCR ini selain primer diperlukan            probe yang harus didisain sesuai dengan sekuen agent yang bersangkutan. Di sini juga diperlukan software atau program Bioinformatika.

·      Bioinformatika untuk Penemuan Obat

Cara untuk menemukan obat biasanya dilakukan dengan menemukan zat/senyawa yang dapat menekan perkembangbiakan suatu agent penyebab penyakit. Karena       perkembangbiakan agent tersebut dipengaruhi oleh banyak faktor, maka faktor-faktor inilah yang dijadikan target. Diantaranya adalah enzim-enzim yang diperlukan untuk perkembangbiakan suatu agent Mula-mula yang harus dilakukan adalah analisa struktur dan fungsi enzim-enzim tersebut. Kemudian mencari atau mensintesa zat/senyawa yang       dapat menekan fungsi dari enzim-enzim tersebut.
Analisa struktur dan fungsi enzim ini dilakukan dengan cara mengganti asam
amino tertentu dan menguji efeknya. Analisa penggantian asam amino ini dahulu
dilakukan secara random sehingga memerlukan waktu yang lama. Setelah Bioinformatika berkembang, data-data protein yang sudah dianalisa bebas diakses oleh siapapun, baik data sekuen asam amino-nya seperti yang ada di SWISS-PROT
maupun struktur 3D-nya yang tersedia di Protein Data Bank (PDB). Dengan database yang tersedia ini, enzim yang baru ditemukan dapat dibandingkan sekuen asam amino-nya, sehingga bisa diperkirakan asam amino yang berperan untuk aktivitas (active site) dan kestabilan enzim tersebut.
Setelah asam amino yang berperan sebagai active site dan kestabilan enzim
tersebut ditemukan, kemudian dicari atau disintesa senyawa yang dapat berinteraksi
dengan asam amino tersebut. Dengan data yang ada di PDB, maka dapat dilihat struktur 3D suatu enzim termasuk active site-nya, sehingga bisa diperkirakan bentuk senyawa yang akan berinteraksi dengan active site tersebut. Dengan demikian, kita cukup mensintesa senyawa yang diperkirakan akan berinteraksi, sehingga obat terhadap suatu penyakit akan jauh lebih cepat ditemukan. Cara ini dinamakan “docking” dan telah banyak digunakan oleh perusahaan farmasi untuk penemuan obat baru.

PENGERTIAN DAN CABANG-CABANG ILMU BIOINFORMATIKA

Secara umum, Bioinformatika dapat digambarkan sebagai: Segala bentuk
penggunaan komputer dalam menangani informasi-informasi biologi. Dalam prakteknya, definisi yang digunakan oleh kebanyakan orang bersifat lebih
terperinci. Bioinformatika menurut kebanyakan orang adalah satu sinonim dari komputasi biologi molekul (penggunaan komputer dalam menandai karakterisasi dari komponenkomponen molekul dari makhluk hidup). Secara Khusus pengertian Bioinformatika digolongkan secara “klasik” dan “baru”.

Bioinformatika "klasik"

Sebagian besar ahli Biologi mengistilahkan ‘mereka sedang melakukan
Bioinformatika’ ketika mereka sedang menggunakan komputer untuk menyimpan
melihat atau mengambil data, menganalisa atau memprediksi komposisi atau struktur dari biomolekul. Ketika kemampuan komputer menjadi semakin tinggi maka proses yang dilakukan dalam Bioinformatika dapat ditambah dengan melakukan simulasi. Yang
termasuk biomolekul diantaranya adalah materi genetik dari manusia --asam nukleat--
dan produk dari gen manusia, yaitu protein. Hal-hal diataslah yang merupakan bahasan
utama dari Bioinformatika "klasik", terutama berurusan dengan analisis sekuen (sequence analysis). Definisi Bioinformatika menurut Fredj Tekaia dari Institut Pasteur
[TEKAIA2004] adalah: "metode matematika, statistik dan komputasi yang bertujuan
untuk menyelesaikan masalah-masalah biologi dengan menggunakan sekuen DNA dan
asam amino dan informasi-informasi yang terkait dengannya."
Dari sudut pandang Matematika, sebagian besar molekul biologi mempunyai sifat yang menarik, yaitu molekul-molekul tersebut adalah polymer; rantai-rantai yang
tersusun rapi dari modul-modul molekul yang lebih sederhana, yang disebut monomer.
Monomer dapat dianalogikan sebagai bagian dari bangunan, dimana meskipun bagian-bagian tersebut berbeda warna dan bentuk, namun semua memiliki ketebalan yang sama dan cara yang sama untuk dihubungkan antara yang satu dengan yang lain.
Monomer yang dapat dikombinasi dalam satu rantai ada dalam satu kelas umum
yang sama, namun tiap jenis monomer dalam kelas tersebut mempunyai karakteristik
masing-masing yang terdefinisi dengan baik. Beberapa molekul-molekul monomer dapat digabungkan bersama membentuk sebuah entitas yang berukuran lebih besar, yang disebut macromolecule. Macromolecule dapat mempunyai informasi isi tertentu yang menarik dan sifat-sifat kimia tertentu. Berdasarkan skema di atas, monomer-monomer tertentu dalam macromolecule dari DNA dapat diperlakukan secara komputasi sebagai huruf-huruf dari alfabet, yang diletakkan dalam sebuah aturan yang telah diprogram sebelumnya untuk membawa pesan atau melakukan kerja di dalam sel.
Proses yang diterangkan di atas terjadi pada tingkat molekul di dalam sel. Salah
satu cara untuk mempelajari proses tersebut selain dengan mengamati dalam
laboratorium biologi yang sangat khusus adalah dengan menggunakan Bioinformatika
sesuai dengan definisi "klasik" yang telah disebutkan di atas.

Bioinformatika "baru"

Salah satu pencapaian besar dalam metode Bioinformatika adalah selesainya
proyek pemetaan genom manusia (Human Genome Project). Selesainya proyek raksasa tersebut menyebabkan bentuk dan prioritas dari riset dan penerapan Bioinformatika berubah. Secara umum dapat dikatakan bahwa proyek tersebut membawa perubahan besar pada sistem hidup kita, sehingga sering disebutkan terutama oleh ahli biologi bahwa kita saat ini berada di masa pascagenom.
Selesainya proyek pemetaan genom manusia ini membawa beberapa perubahan bagi Bioinformatika, diantaranya:
Setelah memiliki beberapa genom yang utuh maka kita dapat mencari perbedaan dan persamaan di antara gen-gen dari spesies yang berbeda. Dari studi perbandingan antara gen-gen tersebut dapat ditarik kesimpulan tertentu mengenai spesies-spesies dan secara umum mengenai evolusi. Jenis cabang ilmu ini sering disebut sebagai perbandingan genom (comparative genomics).  
Sekarang ada teknologi yang didisain untuk mengukur jumlah relatif dari
kopi/cetakan sebuah pesan genetik (level dari ekspresi genetik) pada beberapa tingkatan yang berbeda pada perkembangan atau penyakit atau pada jaringan yang berbeda. Teknologi tersebut, contohnya seperti DNA microarrays akan semakin penting. Akibat yang lain, secara langsung, adalah cara dalam skala besar untuk
mengidentifikasi fungsi-fungsi dan keterkaitan dari gen (contohnya metode yeast twohybrid) akan semakin tumbuh secara signifikan dan bersamanya akan mengikuti
Bioinformatika yang berkaitan langsung dengan kerja fungsi genom (functional
genomics).
Akan ada perubahan besar dalam penekanan dari gen itu sendiri ke hasil-hasil dari gen. Yang pada akhirnya akan menuntun ke: usaha untuk mengkatalogkan semua aktivitas dan karakteristik interaksi antara semua hasil-hasil dari gen (pada manusia) yang disebut proteomics; usaha untuk mengkristalisasi dan memprediksikan struktur-struktur dari semua protein (pada manusia) yang disebut structural genomics.
Apa yang disebut orang sebagai research informatics atau medical informatics,
manajemen dari semua data eksperimen biomedik yang berkaitan dengan molekul atau
pasien tertentu --mulai dari spektroskop massal, hingga ke efek samping klinis-- akan
berubah dari semula hanya merupakan kepentingan bagi mereka yang bekerja di
perusahaan obat-obatan dan bagian TI Rumah Sakit akan menjadi jalur utama dari biologi molekul dan biologi sel, dan berubah jalur dari komersial dan klinikal ke arah akademis.
Dari uraian di atas terlihat bahwa Bioinformatika sangat mempengaruhi
kehidupan manusia, terutama untuk mencapai kehidupan yang lebih baik. Penggunaan
komputer yang notabene merupakan salah satu keahlian utama dari orang yang bergerak dalam TI merupakan salah satu unsur utama dalam Bioinformatika, baik dalam Bioinformatika "klasik" maupun Bioinformatika "baru".

Cabang-cabang yang terkait dengan Bioinformatika   
  
Dari pengertian Bioinformatika baik yang klasik maupun baru, terlihat banyak
terdapat cabang-cabang disiplin ilmu yang terkait dengan Bioinformatika terutama
karena Bioinformatika itu sendiri merupakan suatu bidang interdisipliner. Hal tersebut
menimbulkan banyak pilihan bagi orang yang ingin mendalami Bioinformatika. Di
bawah ini akan disebutkan beberapa bidang yang terkait dengan Bioinformatika.

1.  Biophysics

Biologi molekul sendiri merupakan pengembangan yang lahir dari biophysics.
Biophysics adalah sebuah bidang interdisipliner yang mengaplikasikan teknik-teknik dari ilmu Fisika untuk memahami struktur dan fungsi biologi (British Biophysical Society). Sesuai dengan definisi di atas, bidang ini merupakan suatu bidang yang luas. Namun secara langsung disiplin ilmu ini terkait dengan Bioinformatika karena
penggunaan teknik-teknik dari ilmu Fisika untuk memahami struktur membutuhkan
penggunaan TI.

2.  Computational Biology

Computational biology merupakan bagian dari Bioinformatika (dalam arti yang
paling luas) yang paling dekat dengan bidang Biologi umum klasik. Fokus dari
computational biology adalah gerak evolusi, populasi, dan biologi teoritis daripada
biomedis dalam molekul dan sel. Tak dapat dielakkan bahwa Biologi Molekul cukup
penting dalam computational biology, namun itu bukanlah inti dari disiplin ilmu ini. Pada penerapan computational biology, model-model statistika untuk fenomena biologi lebih disukai dipakai dibandingkan dengan model sebenarnya. Dalam beberapa hal cara tersebut cukup baik mengingat pada kasus tertentu eksperimen langsung pada fenomena biologi cukup sulit. Tidak semua dari computational biology merupakan Bioinformatika, seperti contohnya Model Matematika bukan merupakan Bioinformatika, bahkan meskipun dikaitkan dengan masalah biologi.

3.  Medical Informatics

Menurut Aamir Zakaria [ZAKARIA2004] Pengertian dari medical informatics
adalah "sebuah disiplin ilmu yang baru yang didefinisikan sebagai pembelajaran,
penemuan, dan implementasi dari struktur dan algoritma untuk meningkatkan
komunikasi, pengertian dan manajemen informasi medis."
Medical informatics lebih memperhatikan struktur dan algoritma untuk
pengolahan data medis, dibandingkan dengan data itu sendiri. Disiplin ilmu ini, untuk
alasan praktis, kemungkinan besar berkaitan dengan data-data yang didapatkan pada level biologi yang lebih "rumit" yaitu informasi dari sistem-sistem superselular, tepat pada level populasi di mana sebagian besar dari Bioinformatika lebih memperhatikan informasi dari sistem dan struktur biomolekul dan selular.

4.  Cheminformatics

Cheminformatics adalah kombinasi dari sintesis kimia, penyaringan biologis, dan
pendekatan data-mining yang digunakan untuk penemuan dan pengembangan obat
(Cambridge Healthech Institute's Sixth Annual Cheminformatics conference). Pengertian disiplin ilmu yang disebutkan di atas lebih merupakan identifikasi dari salah satu aktivitas yang paling populer dibandingkan dengan berbagai bidang studi yang mungkin ada di bawah bidang ini.
Salah satu contoh penemuan obat yang paling sukses sepanjang sejarah adalah penisilin, dapat menggambarkan cara untuk menemukan dan mengembangkan obat-obatan hingga sekarang, meskipun terlihat aneh. Cara untuk menemukan dan mengembangkan obat adalah hasil dari kesempatan, observasi, dan banyak proses kimia yang intensif dan lambat. Sampai beberapa waktu yang lalu, disain obat dianggap harus selalu menggunakan kerja yang intensif, proses uji dan gagal (trial-error process). Kemungkinan penggunaan TI untuk merencanakan secara cerdas dan dengan mengotomatiskan proses-proses yang terkait dengan sintesis kimiawi dari komponenkomponen pengobatan merupakan suatu prospek yang sangat menarik bagi ahli kimia          dan ahli biokimia. Penghargaan untuk menghasilkan obat yang dapat dipasarkan secara lebih cepat sangatlah besar, sehingga target inilah yang merupakan inti dari cheminformatics.
Ruang lingkup akademis dari cheminformatics ini sangat luas. Contoh bidang minatnya antara lain: Synthesis Planning, Reaction and Structure Retrieval,
3-D Structure Retrieval, Modelling, Computational Chemistry, Visualisation Tools and Utilities.

5.  Genomics

Genomics adalah bidang ilmu yang ada sebelum selesainya sekuen genom
kecuali dalam bentuk yang paling kasar. Genomics adalah setiap usaha untuk
menganalisa atau membandingkan seluruh komplemen genetik dari satu spesies atau lebih. Secara logis tentu saja mungkin untuk membandingkan genom-genom dengan membandingkan kurang lebih suatu himpunan bagian dari gen di dalam genom yang representatif.

6.  Mathematical Biology

Mathematical biology lebih mudah dibedakan dengan Bioinformatika daripada
computational biology dengan Bioinformatika. Mathematical biology juga menangani
masalah-masalah biologi, namun metode yang digunakan untuk menangani masalah
tersebut tidak perlu secara numerik dan tidak perlu diimplementasikan dalam software maupunhardware. Bahkan metode yang dipakai tidak perlu "menyelesaikan" masalah apapun; dalammathematical biology bisa dianggap beralasan untuk mempublikasikan sebuah hasil yang hanya menyatakan bahwa suatu masalah biologi berada pada kelas umum tertentu. Menurut Alex Kasman [KASMAN2004] Secara umum mathematical biology melingkupi semua ketertarikan teoritis yang tidak perlu merupakan sesuatu yang beralgoritma, dan tidak perlu dalam bentuk molekul, dan tidak perlu berguna dalam menganalisis data yang terkumpul.

7.  Proteomics

Istilah proteomics pertama kali digunakan untuk menggambarkan himpunan dari
protein-protein yang tersusun (encoded) oleh genom. Ilmu yang mempelajari proteome, yang disebut proteomics, pada saat ini tidak hanya memperhatikan semua protein didalam sel yang diberikan, tetapi juga himpunan dari semua bentuk isoform dan modifikasi dari semua protein, interaksi diantaranya, deskripsi struktural dari proteinprotein dan kompleks-kompleks orde tingkat tinggi dari protein, dan mengenai masalah tersebut hampir semua pasca genom.
Michael J. Dunn [DUNN2004], Pemimpin Redaksi dari Proteomics mendefiniskan kata "proteome" sebagai: "The PROTEin complement of the genOME". Dan mendefinisikan proteomics berkaitan dengan: "studi kuantitatif dan kualitatif dari ekspresi gen di level dari protein-protein fungsional itu sendiri". Yaitu: "sebuah antarmuka antara biokimia protein dengan biologi molekul".
Mengkarakterisasi sebanyak puluhan ribu protein-protein yang dinyatakan dalam
sebuah tipe sel yang diberikan pada waktu tertentu apakah untuk mengukur berat
molekul atau nilai-nilai isoelektrik protein-protein tersebut melibatkan tempat
penyimpanan dan perbandingan dari data yang memiliki jumlah yang sangat besar, tak terhindarkan lagi akan memerlukan Bioinformatika.

8.  Pharmacogenomics

Pharmacogenomics adalah aplikasi dari pendekatan genomik dan teknologi pada
identifikasi dari target-target obat. Contohnya meliputi menjaring semua genom untuk
penerima yang potensial dengan menggunakan cara Bioinformatika, atau dengan
menyelidiki bentuk pola dari ekspresi gen di dalam baik patogen maupun induk selama terjadinya infeksi, atau maupun dengan memeriksa karakteristik pola-pola ekspresi yang ditemukan dalam tumor atau contoh dari pasien untuk kepentingan diagnose (kemungkinan untuk mengejar target potensial terapi kanker).
Istilah pharmacogenomics digunakan lebih untuk urusan yang lebih "trivial"
tetapi dapat diargumentasikan lebih berguna-- dari aplikasi pendekatan Bioinformatika pada pengkatalogan dan pemrosesan informasi yang berkaitan dengan ilmu Farmasi dan Genetika, untuk contohnya adalah pengumpulan informasi pasien dalam database.

9.  Pharmacogenetics

Tiap individu mempunyai respon yang berbeda-beda terhadap berbagai pengaruh obat; sebagian ada yang positif, sebagian ada yang sedikit perubahan yang tampak pada kondisi mereka dan ada juga yang mendapatkan efek samping atau reaksi alergi. Sebagian dari reaksi-reaksi ini diketahui mempunyai dasar genetik. Pharmacogenetics adalah bagian dari pharmacogenomics yang menggunakan metode genomik/Bioinformatika untuk mengidentifikasi hubungan-hubungan genomic contohnya SNP (Single Nucleotide Polymorphisms), karakteristik dari profil respons pasien tertentu dan menggunakan informasi-informasi tersebut untuk memberitahu administrasi dan pengembangan terapi pengobatan. Secara menakjubkan pendekatan tersebut telah digunakan untuk "menghidupkan kembali" obat-obatan yang sebelumnya dianggap tidak efektif, namun ternyata diketahui manjur pada sekelompok pasien tertentu. Disiplin ilmu ini juga dapat digunakan untuk mengoptimalkan dosis kemoterapi pada pasien-pasien tertentu.
Gambaran dari sebagian bidang-bidang yang terkait dengan Bioinformatika di atas memperlihatkan bahwa Bioinformatika mempunyai ruang lingkup yang sangat luas dan mempunyai peran yang sangat besar dalam bidangnya. Bahkan pada bidang pelayanan kesehatan Bioinformatika menimbulkan disiplin ilmu baru yang menyebabkan peningkatan pelayanan kesehatan.

Penerapan Bioinformatika di Indonesia

1.  Deteksi Kelainan Janin

Lembaga Biologi Molekul Eijkman bekerja sama dengan Bagian Obstetri dan
Ginekologi Fakultas Kedokteran Universitas Indonesia dan Rumah Sakit Cipto
Mangunkusumo sejak November 2001 mengembangkan klinik genetik untuk mendeteksi secara dini sejumlah penyakit genetik yang menimbulkan gangguan pertumbuhan fisik maupun retardasi mental seperti antara lain, talasemia dan sindroma down. Kelainan ini bisa diperiksa sejak janin masih berusia beberapa minggu.
Talasemia adalah penyakit keturunan di mana tubuh kekurangan salah satu zat pembentuk hemoglobin (Hb) sehingga mengalami anemia berat dan perlu transfusi darah seumur hidup. Sedangkan sindroma down adalah kelebihan jumlah untaian di kromosom 21 sehingga anak tumbuh dengan retardasi mental, kelainan jantung, pendengaran dan penglihatan buruk, otot lemah serta kecenderungan menderita kanker sel darah putih (leukemia).
Dengan mengetahui sejak dini, pasangan yang hendak menikah, atau pasangan
yang salah satunya membawa kelainan kromosom, atau pasangan yang mempunyai anak yang menderita kelainan kromosom, atau penderita kelainan kromosom yang sedang hamil, atau ibu yang hamil di usia tua bisa memeriksakan diri dan janin untuk
memastikan apakah janin yang dikandung akan menderita kelainan kromosom atau tidak, sehingga mempunyai kesempatan untuk mempertimbangkan apakah kehamilan akan diteruskan atau tidak setelah mendapat konseling genetik tentang berbagai kemungkinan yang akan terjadi.
Di bidang talasemia, Eijkman telah memiliki katalog 20 mutasi yang mendasari
talasemia beta di Indonesia, 10 di antaranya sering terjadi. Lembaga ini juga mempunyai informasi cukup mengenai spektrum mutasi di berbagai suku bangsa yang sangat bervariasi. Talasemia merupakan penyakit genetik terbanyak di dunia termasuk di Indonesia.

2.  Pengembangan Vaksin Hepatitis B Rekombinan

Lembaga Biologi Molekul Eijkman bekerja sama dengan PT Bio Farma (BUMN
Departemen Kesehatan yang memproduksi vaksin) sejak tahun 1999 mengembangkan vaksin Hepatitis B rekombinan, yaitu vaksin yang dibuat lewat rekayasa genetika. Selain itu Lembaga Eijkman juga bekerja sama dengan PT Diagnosia Dipobiotek untuk mengembangkan kit diagnostik.

3.  Meringankan Kelumpuhan dengan Rekayasa RNA

Kasus kelumpuhan distrofi (Duchenne Muscular Dystrophy) yang menurun kini
dapat dikurangi tingkat keparahannya dengan terapi gen. Kelumpuhan ini akibat
ketidaknormalan gen distrofin pada kromosom X sehingga hanya diderita anak laki-laki. Diperkirakan satu dari 3.500 pria di dunia mengalami kelainan ini.
Dengan memperbaiki susunan ekson atau bagian penyusun RNA gen tersebut
pada hewan percobaan tikus, terbukti mengurangi tingkat kelumpuhan saat
pertumbuhannya menjadi dewasa.
Gen distrofin pada kasus kelumpuhan paling sering disebabkan oleh delesi atau
hilangnya beberapa ekson pada gen tersebut. Normalnya pada gen atau DNA distrofin terdapat 78 ekson. Diperkirakan 65 persen pasien penderita DMD mengalami delesi dalam jumlah besar dalam gen distrofinnya. Kasus kelumpuhan ini dimulai pada otot prosima seperti pangkal paha dan betis. Dengan bertambahnya usia kelumpuhan akan meluas pada bagian otot lainnya hingga ke leher. Karena itu dalam kasus kelumpuhan yang berlanjut dapat berakibat kematian.
Teknologi rekayasa RNA seperti proses penyambungan (slicing) ekson dalam
satu rangkaian terbukti dapat mengoreksi mutasi DMD. Bila bagian ekson yang masih ada disambung atau disusun ulang, terjadi perubahan asam amino yang membentuk protein. Molekul RNA mampu mengenali molekul RNA lainnya dan melekat dengannya.

KOMPUTASI DAN PARALEL PROCESSING

Sebelum menuju ke pengertian Komputasi Paralel itu sendiri, untuk masing-masing kata pada komputasi paralel yaitu Komputasi dan Paralel. Komputasi bisa diartikan sebagai cara untuk menemukan pemecahan masalah dari data input dengan menggunakan suatu algoritma, dan Paralel adalah suatu yang berjalan secara bersamaan.  Jadi untuk definisi Komputasi Paralel adalah teknik untuk melakukan pemecahan masalah menggunakan suatu algoritma secara bersamaan dengan memanfaatkan komputer yang bediri sendiri secara bersamaan.

Bisasanya komputasi paralel ini digunakan pada saat penggunaan kapasitas yang sangat besar, karena di dalam komputasi ini data yang diolah sangat besar dan banyak. Untuk melakukan komputasi paralel diperlukan infrastruktur mesin paralel yang terdiri dari banyak komputer yang terhubung satu sama lainnya melalui jaringan dan mampu bekerja secara paralel. Selain itu diperlukan juga software pendukung yang disebut sebagai middleware yang mengatur distribusi dalam satu mesin paralel. Selanjutnya pemakai sendiri yang harus membuat pemrograman paralel untuk membuat sebuah komputasi. Pada komputasi paralel ini juga diperlukan pemrograman paralel. Pemrograman paralel adalah teknik pemrograman komputer yang memungkinkan untuk menjalankan operasi secara bersamaan baik dalam satu maupun banyak prosessor.

Terdapat 4 model pemrosesan paralel berdasarkan alur instruksi dan alur data yang digunakan, yaitu :
  • SISD Single Instruction Single Datapath, ini prosesor tunggal, yang bukan paralel.
  • SIMD Single Instruction Multiple Datapath, alur instruksi yang sama dijalankan terhadap banyak alur data yang berbeda. Alur instruksi di sini kalau tidak salah maksudnya ya program komputer itu. trus datapath itu paling ya inputnya, jadi inputnya lain-lain tapi program yang digunakan sama.
  • MIMD Multiple Instruction Multiple Datapath, alur instruksinya banyak, alur datanya juga banyak, tapi masing-masing bisa berinteraksi.
  • MISD Multiple Instruction Single Datapath, alur instruksinya banyak tapi beroperasi pada data yang sama.

Tujuan dari pemrograman paralel adalah untuk meningkatkan performa komputasi. Jadi pada komputasi paralel ini jika diberikan masalah yang masuk secara banyak dan bersamaan, maka akan mudah dan cepat diselesaikan dengan cara paralel.

Hubungan antara Komputasi Modern dengan Parallel Processing

Tujuan dari komputasi paralel adalah meningkatkan kinerja komputer dalam menyelesaikan berbagai masalah. Dengan membagi sebuah masalah besar ke dalam beberapa masalah kecil, membuat kinerja menjadi cepat. Formula komputasi paralel yang diajukan pada hukum Amdahl. Dimana a adalah banyaknya paralel yang terjadi. Secara teori, artinya proses penyelesaian masalah menjadi lebih cepat dengan menggunakan komputasi paralel.

Jadi, sudah jelas tertera bahwa hubungan dari Komputasi Modern dan Pemrosesan Parallel adalah penggunaan komputer dengan pemrosesan paralel sangat mempercepat kinerja dibandingkan dengan penyelesaian masalah dengan satu CPU. Oleh sebab itu, peningkatan kinerja atau proses komputasi semakin diterapkan, salah satunya adalah dengan cara meningkatkan kecepatan perangkat keras. Dimana komponen utama dalam perangkat keras komputer adalah processor. Sedangkan parallel processing adalah penggunaan beberapa processor (multiprocessor atau arsitektur komputer dengan banyak processor) agar kinerja computer semakin cepat.

Kinerja komputasi dengan menggunakan paralel processing itu menggunakan dan memanfaatkan beberapa komputer atau CPU untuk menemukan suatu pemecahan masalah dari masalah yang ada. Komputasi dengan paralel processing akan menggabungkan beberapa CPU, dan membagi-bagi tugas untuk masing-masing CPU tersebut. Jadi, satu masalah terbagi-bagi penyelesaiannya.


http://fajarandhikap.blogspot.co.id/2013/04/komputasi-paralel.html

https://niamoraa.wordpress.com/softskill-project-2/hubungan-pemoresan-paralel-dan-komputasi-modern/

Minggu, 01 Mei 2016

Komputasi Cloud


Dengan semakin berkembangnya teknologi, maka pengguna tidak perlu direpotkan dengan manajemen waktu dan sumber daya. Salah satunya adalah dengan adanya teknologi Cloud (Awan) ini bukan berarti ada kegiatan diawan…. apalagi komputer yang ada di langit. Dalam Cloud kita (pengguna) dapat menggunakan konsep - konsep seperti Social Networking, Share, Colaborations, Maintenance, Terdistribusi, Scalability, Concurency, dan transparan.Cloud Computing hadir dengan fitur yang memudahkan akses data dari mana saja dan kapan saja, karena dengan memanfaatkan internet dan menggunakan perangkat fixed serta mobile device yang menggunakan internet cloudsebagai tempat penyimpanan data, aplikasi dan lainya.

Komputasi Cloud
Cloud Computing atau bisa disebut juga Komputasi awan adalah suatu penggabungan antara teknologi komputer yang telah berkembang dengan basis internet yang juga telah berkembang. Mengapa disebut komputasi awan?? Karena komputasi dianggap sebagai komputer dan internet sebagai awan dimana bekerja tidak kelihatan oleh mata manusia. Jadi pada intinya manusia sebagai user memanfaatkan teknologi computer dengan menjalankan aplikasi yang tidak berada dicomputer yang digunakannya atau tidak ada file-file yang ada dikomputer kita langsung, namun file – file itu berada di computer lain yang dihubungkan dengan internet. Sebagai contoh : Pembuatan file atau dokumen pada Google Docs,

Komputasi Grid
Komputasi Grid (Grid Computing) itu sendiri adalah sebuah sistem komputasi terdistribusi, yang memungkinkan seluruh sumber daya (resource) dalam jaringan, seperti pemrosesan, bandwidth jaringan, dan kapasitas media penyimpan, membentuk sebuah sistem tunggal secara virtual. Seperti halnya pengguna internet yang mengakses berbagai situs web dan menggunakan berbagai protokol seakan-akan dalam sebuah sistem yang berdiri sendiri, maka pengguna aplikasi Grid computing seolah-olah akan menggunakan sebuah virtual komputer dengan kapasitas pemrosesan data yang sangat besar. Grid computing menawarkan solusi komputasi yang murah, yaitu dengan memanfaatkan sumber daya yang tersebar dan heterogen serta pengaksesan yang mudah dari mana saja. Globus Toolkit adalah sekumpulan perangkat lunak dan pustaka pembuatan lingkungan komputasi grid yang bersifat open-source. Dengan adanya lingkungan komputasi grid ini diharapkan mempermudah dan mengoptimalkan eksekusi program-program yang menggunakan pustaka paralel.
Konsep dasar dari komputasi grid:
·         Sumber daya dikelola dan dikendalikan secara lokal
·         Sumber daya berbeda dapat mempunyai kebijakan dan mekanisme berbeda
Keuntungan penerapan komputasi grid:
·         Peningkatan dari sumber daya: Resource pool dari CPU dan storage.
·         Lebih cepat dan lebih besar: Komputasi simulasi dan penyelesaian masalah dapat berjalan lebih cepat dan mencakup domain yang lebih luas
·         Software dan aplikasi: Pool dari aplikasi dan pustaka standard, Akses terhadap model dan perangkat berbeda, Metodologi penelitian yang lebih baik.
·         Data: Akses terhadap sumber data global, dan hasil penelitian lebih baik.

Virtualisasi
Istilah Virtualisasi sering kita dengar dan selalu disandingkan dengan Cloud Computing akan tetapi Cloud Computing itu lebih dari sekedar virtualisasi. Virtualisasi adalah sebuah teknologi, yang memungkinkan anda yaitu user atau pemakai untuk membuat versi virtual dari sesuatu yang bersifat fisik, misalnya Sistem Operasi, Storage Data atau Sumber Daya Jaringan. Proses tersebut dilakukan oleh sebuah software atau firmware bernama Hypervisor. Hypervisor inilah yang menjadi nyawanya virtualisasi, karena dialah layer yang "berpura - pura" menjadi sebuah infrastruktur untuk menjalankan beberapa virtual machine. Dalam prakteknya, dengan membeli dan memiliki satu buah mesin, anda seolah - olah memiliki banyak server, sehingga anda bisa mengurangi pengeluaran IT untuk pembelian server baru, komponen, storage, dan software pendukung lainnya. 
Sebagai contoh: Misalkan terdapat satu buah komputer yang telah terinstall Sistem Operasi Linux Ubuntu. Kemudian dengan menggunakan perangkat lunak virtualization semisal Virtualbox kita dapat menginstall dua buah sistem operasi lain sebagai contoh Windows XP dan FreeBSD. Sistem operasi yang terinstall di komputer secara fisik dalam hal ini Linux ubuntu disebut sebagai host machine sedangkan sistem operasi yang diinstall diatasnya dinamakan guest machine. Istilah host dan guest dikenalkan untuk memudahkan dalam membedakan antara sistem operasi fisik yang terinstall di komputer dengan sistem operasi yang diinstall diatasnya atau virtualnya.
Perangkat lunak yang digunakan untuk menciptakan virtual machine pada host machine biasa disebut sebagai hypervisor atau Virtual Machine Monitor (VMM). Menurut Robert P. Goldberg pada tesisnya yang berjudul “Architectural Principles For Virtual Computer Systems” pada hal 23 menyebutkan bahwa tipe-tipe dari VMM ada 2 yaitu :
• Type 1 berjalan pada fisik komputer yang ada secara langsung. Pada jenis ini hypervisor / VMM benar-benar mengontrol perangkat keras dari komputer host-nya. Termasuk mengontrol sistem operasi-sistem operasi guest-nya. Contoh implementasi yang ada dan sudah saya coba secara langsung ialah VMWare ESXi. Adapun contoh yang lain yang ada seperti Microsoft Hyper-V.
• Type 2 berjalan pada sistem operasi diatasnya. Pada tipe ini tentunya guest sistem operasi nya berada di layer diatasnya lagi.

Virtualisasi dapat diimplementasikan ke dalam berbagai bentuk, antara lain:
·         Network Virtualization : VLAN, Virtual IP (untclustering), Multilink   
·         Memory Virtualization : pooling memory dari node-node di cluster  
·         Grid Computing :banyak komputer = satu    
·         Application Virtualization : Dosemu, Wine     
·         Storage Virtualization : RAID, LVM   
·         Platform Virtualization : virtual computer


Distributed Computation dalam Cloud Computing
Komputasi terdistribusi merupakan bidang ilmu komputer yang mempelajari sistem terdistribusi. Sebuah sistem terdistribusi terdiri dari beberapa komputer otonom yang berkomunikasi melalui jaringan komputer. Komputer yang saling berinteraksi untuk mencapai tujuan bersama. Suatu program komputer yang berjalan dalam sistem terdistribusi disebut program didistribusikan, dan didistribusikan pemrograman adalah proses menulis program tersebut.Distributed Computing juga mengacu pada penggunaan sistem terdistribusi untuk memecahkan masalah komputasi. Dalam Distributed Computing, masalah dibagi menjadi banyak tugas, dikerjakan secara bersamaan yang diselesaikan oleh satu komputer.


Map Reduce dan NoSQL (Not Only SQL)
            Map-Reduce adalah salah satu konsep teknis yang sangat penting di dalam teknologi cloud terutama karena dapat diterapkannya dalam lingkungan distributed computing. Dengan demikian akan menjamin skalabilitas aplikasi. Salah satu contoh penerapan nyata map-reduce ini dalam suatu produk adalah yang dilakukan Google. Dengan inspirasi dari functional programming map dan reduce Google bisa menghasilkan file System Distributed yang sangat scalable, Google Big Table. Dan juga terinspirasi dari Google, pada ranah open source terlihat percepatan pengembangan framework lainnya yang juga bersifat terdistribusi dan menggunakan konsep yang sama, project open source tersebut bernama Apache Hadoop. NoSQL adalah istilah untuk menyatakan berbagai hal yang didalamnya termasuk database sederhana yang berisikan key dan value seperti Memory cache, ataupun yang lebih canggih yaitunon-database relational seperti MongoDB, Cassandra, CouchDB, dan yang lainnya. Wikipedia menyatakan NoSQL adalah sistem management database yang berbeda dari sistem management database relasional yang klasik dalam beberapa hal. NoSQL mungkin tidak membutuhkan skema table dan umumnya menghindari operasi join dan berkembang secara horizontal. Akademisi menyebut database seperti ini sebagai structured storage, istilah yang didalamnya mencakup sistem management database relasional.

NoSQL Database

Database NoSQL, disebut juga Not Only SQL, adalah sebuah pendekatan untuk pengelolaan data dan desaindatabase yang berguna untuk sejumlah item data yang sangat besar dan terdistribusi. NoSQL, yang mencakup berbagai teknologi dan arsitektur, berusaha untuk memecahkan masalah skalabilitas dan kinerja data yang besar yang tidak dirancang pada database relasional. NoSQL ini sangat berguna ketika perusahaan perlu untuk mengakses dan menganalisis sejumlah besar data terstruktur atau data yang disimpan dari jarak jauh pada beberapa virtual server di awan. Berlawanan dengan kesalahpahaman yang disebabkan oleh namanya, NoSQL tidak melarang bahasa query terstruktur (SQL). Meskipun benar bahwa beberapa sistem NoSQL sepenuhnya non-relasional, yang lain hanya menghindari fungsi relasional dipilih seperti skema tabel tetap dan bergabung dengan operasi. Sebagai contoh, daripada menggunakan tabel, database NoSQL mungkin mengatur data menjadi objek, kunci / nilai berpasangan atau tupel.


Sumber:
https://id.wikipedia.org/wiki/Komputasi_awan
https://id.wikipedia.org/wiki/Komputasi_grid
http://kitatkj2.blogspot.co.id/2014/05/pengertian-virtualisasi.html
http://adriyani-ridwan.blogspot.co.id/2015/05/pengantar-komputasi-cloud_36.html

Minggu, 27 Maret 2016

Pengantar Komputasi Modern

           Pada pertemuan kali ini saya membahas tentang teori komputasi dan implementsinya dalam berbagai bidang. Langsung saja pertama dan paling utama saya akan akan menjelaskan tentang komputasi yang saya dapat dari sumber internet.

    1.    Pengertian Komputasi

Komputasi dapat digambarkan sebagai suatu cara dalam memecahkan suatu persoalan atau masalah dari data input dengan menggunakan suatu algoritma. Komputasi biasanya dapat dilakukan dengan menggunakan pena atau kertas dengan bantuan suatu table. Namun dizaman yang semakin modern ini, kini komputas telah banyak dilakukan oleh masyarakat dengan menggunakan computer.
Pengertian komputasi secara umum merupakan suatu algoritma yang digunakan untuk memecahkan suatu masalah dari sebuah input data. Data input yang dimagsud adalah suatu data yang berasal dari luar lingkungan dari system. Komputasi juga merupakan bagian dari ilmu matematika dan teknik penyelesaian numeric serta penggunaan computer untuk menganalisis dan memecahkan berbagai permasalahan ilmu (sains).



     2.    Teori Komputasi

Teori komputasi merupakan bagian dari cabang ilmu komputer dan matematika yang membahas mengenai solusi untuk penyelesaian suatu masalah yang dapat dipecahkan dengan model komputasi dengan menggunakan algoritma. Secara umum, terori komputasi dapat diibaratkan sebagai suatu cara untuk dapat menyelesaikan suatu permasalahan yang berasal dari data input dengan menggunakan suatu algoritma. 

Agar lebih jelas lagi mengenai komputasi, ada beberapa contoh komputasi pada bidangnya masing-masing. Diantaranya yaitu : 

      a.     Teori Komputasi Di Bidang Ilmu Fisika
Komputasi digunakan dalam ilmu fisika sebagai alat menyelesaikan permasalahan medan magnet menggunakan komputasi fisika dengan menentukan besarnya medan magnet dan membandingkannya dengan panjang kawat. 

      b.     Teori Komputasi Di Bidang Ilmu Kimia

Komputasi memungkinkan digunakan untuk peramalan sifat-sifat atom dan molekul. Komputasi juga dapat dilakukan untuk menjelajahi mekanisme reaksi dan menjelaskan pengamatan pada reaksi di laboratorium serta memahami sifat dan perubahan pada sistem mikroskopis melalui simulasi yang berlandaskan hukum interaksi yang ada pada sistem. 

      c.     Teori Komputasi Di Bidang Ilmu Matematika

Penerapan teknik-teknik komputasi matematika meliputi metode numerik, scientifik computing, metode ielemen hingga metode beda, scientific data mining, scientific process control dan metode terkait lainnya untuk menyelesaikan masalah nyata berskala besar. 

      d.     Teori Komputasi Di Bidang Ilmu Ekonomi

Mempelajari titik pertemuan antara ekonomi dan komputasi meliputi agent-based computational modelling, computational econometrics, dan statistic, komputasi keuangan, computational modelling of dynamic macroeconomic systems dan pengembangan alat bantu dalam pendidikan komputasi ekonomi. 

      e.     Teori Komputasi Di Bidang Ilmu Biologi

Merupakan penerapan berupa aplikasi dari teknologi informasi dan ilmu komputer terhadap bidang biologi molekuler. 

      f.      Teori Komputasi Di Bidang Ilmu Geografi

Komputasi awan didefinisikan sebagai sebuah model yang memungkinkan kenyamanan, akses on-demand terhadapa kumpulan sumber daya komputasi (contohnya jaringan, server, media penyimpanan, aplikasi dan layanan komputasi) yang konfigurasinya dapat dilakukan dengan cepat dan disertai sedikit usaha untuk mengelola dan berhubungan dengan penyedia layanan.

    3.    Implementasi komputasi dalam berbagai bidang

Pada penerapan komputasi modern tersebut dapat diberbagai bidang, seperti :


      a.     Bidang Kesehatan,

Salah satu contoh penerapan komputasi modern di bidang kesehatan adalah penggunaan alat-alat kedokteran yang mempergunakan aplikasi komputer, salah satunya adalah USG (Ultra sonografi). USG adalah suatu alat dalam dunia kedokteran yang memanfaatkan gelombang ultrasonik, yaitu gelombang suara yang memiliki frekuensi yang tinggi (250 kHz – 2000 kHz) yang kemudian hasilnya ditampilkan dalam layar monitor.

      b.     Bidang Keamanan,

Bidang pertahanan dan keamanan juga termasuk dalam salah satu manfaat komputer di berbagai bidang. Dengan adanya komputer, setiap negara bisa memperkuat barisan pertahanannya dari serangan luar. Peralatan canggih yang ada untuk bertahan dan menyerang juga bisa dikendalikan oleh komputer. Dibidang militer komputer digunakan untuk mengendalikan senjata atau peluru kendali. Untuk navigasi kapal laut dan kapal selam, untuk melakukan simulasi peperangan, dan melakukan pengiriman sandi-sandi rahasia militer.

      c.     Bidang Industri,

Di bidang industri, komputer telah dipergunakan untuk mengontrol mesin-mesin produksi dengan ketepatan tinggi, misalnya CNC (Computer Numerical Contor) pengawasan numeric atau perhitungan, CAM (Computer Aided Manufacture), CAD (Computer Aided Design), yaitu untuk merancang bentuk (desain) sebuah produk yang akan dikeluarkan pada sebuah industri atau pabrik.

      d.     Bidang Pemerintahan

Cloud Computing dalam pemerintahan (E-Goverment) dapat mendongkrak kinerja khususnya dalam bidang pemerintahan. E-Goverment dapat membantu para staff di bidang pemerintahan untuk memberikan pelayanan yang lebih baik ke masyarakat. Pemerintah dalam negara Indonesia telah menggunakan cloud computing. Contoh pertama yaitu sebagai penyediaan sumber informasi. Badan Pengkajian Dan Penerapan Teknologi (BPPT) telah menyediakan layanan Cloud Computing sebagai layanan jasa alih daya pengelolaan TIK untuk instansi pemerintah.  Layanan ini bertujuan untuk dapat mewujudkan percepatan e-government, karena memungkinkan pengguna pemerintah berkonsentrasi dalam memberikan layanan dan tidak dipusingkan dengan konfigurasi maupun pemeliharan perangkat teknologi informasi.

      e.     Bidang Perbankan,
            
              Di dalam bidang perbankan sangat jelas sekali fungsi komputer ini. Dengan adanya komputer, segala aktivitas perbankan baik itu simpan pinjam dan transaksi keuangan lainnya dapat berjalan dengan lancar. Dengan adanya sistem yang canggih di dalam komputer perbankan dapat menjamin keamanan dan kerahasiaan dari setiap nasabah.

Contoh Website Menggunakan Teknik Komputasi

        Disini saya akan memberikan satu contoh website sebuah perusahaan di bidang maskapai penerbangan yang kiranya mengimplementasikan konsep komputasi modern.

Website-nya adalah : http://www.airasia.com


Mungkin Anda pernah atau bahkan sering mengakses website tersebut. Saya akan membahas penggunaan konsep komputasi modern yang ada pada website tersebut berikut dengan pembahasan kelebihan dan kekurangan website.

Tampilan awal website :



Pertama Anda membuka website perusahaan Air Asia. Anda akan di hadapkan dengan interfaceseperti di atas. Dimana ada banner berjalan yang menawarkan Anda harga-harga yang sangat murah dan menarik. Untuk memesan tiket perjalanan. Anda dapat mengisikan informasi pada bagian pemesanan tiket, di bagian kiri website.


Setelah memasukkan kota asal dan tujuan, tanggal, dan jumlah tiket yang diinginkan, website akan mengarahkan kita ke halaman yang menunjukkan harga total tiket seluruhnya yang akan kita bayarkan. Dengan begitu, kita tidak perlu lagi menghitung jumlah harga tiket berikut dengan pajaknya, karena sudah terhitung secara otomatis.


Halaman diatas adalah halaman yang mengharuskan Anda untuk memasukkan keterangan diri Anda. Mulai dari nama depan, nama belakang, nomor telefon, dan kewarganegaraan Anda.



Air Asia memberikan penawaran pilihan untuk Anda, yaitu perjalanan dengan disambut oleh karpet merah dan atau Anda ingin menggunakan asuransi atau tidak. Pilihan diatas adalah pilihan yang dapat Anda ambil maupun tidak, karena tidak wajib. Bila Anda memilih untuk menggukan pilihan yang di tawarkan tersebut, maka Anda akan dikenai biaya tambahan.



Halaman selanjutnya mengarahkan Anda pada pemilihan tempat duduk. Anda dapat memilih tempat duduk yang sesuai dengan keinginan Anda sendiri secara online dengan melihat tempat duduk yang kosong dengan warna abu-abu. Warna merah adalah pilihan tempat duduk Hot Seat yang dimana sering dipilih orang, maka dari itu harganya juga berbeda dengan tempat duduk biasa. 



Setelah memilih tempat duduk yang sesuai dengan keinginan Anda, anda akan diarahkan pada halaman pembayaran. Pembayaran hanya dapat digunakan dengan menggunakan kartu kredit dari 4 bank yang di tawarkan, seperti gambar di atas. Tidak ada pembayaran secara trasnfer maupun cash. Maka dari itu, pembeli tiket online diharuskan mempunyai kartu kredit, karena perusahaan besar seperti contohnya perusahaan maskapai di seluruh dunia, hanya percaya pada pertanggungjawaban bank dalam segala macam pembayaran online.

Setelah selesai melakukan pembayaran, Anda akan langsung dikirimkan Itinenarry Ticket ke e-mail yang sudah Anda masukkan sebelumnya. Jadi, tiket Anda adalah sebuah surat elektronik yang dapat Anda cetak maupun tujukkan ke petugas penerbangan di bandara.


Sumber :